

Computational Music and Sound Archiving

The Computational Music and Sound Archiving system provides high-level audio
feature extraction facilities for multi-viewpoint music similarity analysis.

Music similarity is hard to analyse. A viewpoint highlights certain aspects of
musical perception. Asking for similarity regarding pitch requires another
viewpoint than asking for rhythm similarity.

COMSAR combines pre-selected low-level audio features to Track
objects, which represent a viewpoint.

Contents

	Installation
	Installation from PyPi

	Installation from source

	Basic usage

	Track sytem
	PitchTrack

	RhythmTrack

	TimbreTrack

	FormTrack

Open source

comsar is an open source project. It is published under the permissive BSD
3-Clause License [https://opensource.org/licenses/BSD-3-Clause]. You may change and republish the code for any personal or
commercial project. The comsar source code [https://github.com/ifsm/comsar] is available on GitHub.

Installation

Installation from PyPi

comsar is available on PyPi. Simply run the following command in your favorite
terminal emulator:

pip install comsar

Installation from source

Installation from source is done in two steps:

	If you do not have git installed, simply navigate to the source code
repository, click on the green “Code” button and then select “Download ZIP”.
Otherwise, clone the source code with git:

git clone https://github.com/ifsm/comsar

	Once the code is downloaded, change to the comsar root directory and advise Python to install
the pacakge:

cd path/to/comsar
python3 -m pip install .

Basic usage

In order to compute audio features regarding a certain track, you just have to
create an instance of your desired track object and then call its
extract() method with the path to an audio file. Considre the following
example:

from comsar.tracks import TimbreTrack

tt = TimbreTrack()
res = tt.extract('path/to/my_audio.wav')
res.to_pickle('my_features.pkl')

The first line imports the desired Track object, in this case a
TimbreTrack. The third line creates a TimbreTrack instance
with the name tt. The fourth line calls the extract method of
tt and passes it the path to an actual audio file. comsar then
processes the audio file and makes the results available under the name
res. The fifths line eventually saves the results to disc.

Track sytem

PitchTrack

RhythmTrack

TimbreTrack

	
class comsar.tracks.TimbreTrack(stft_params: Optional[apollon.signal.container.StftParams] = None, corr_dim_params: Optional[apollon.signal.container.CorrDimParams] = None)

	High-level interface for timbre feature extraction.

	
__init__(stft_params: Optional[apollon.signal.container.StftParams] = None, corr_dim_params: Optional[apollon.signal.container.CorrDimParams] = None) → None

	
	Parameters

	
	stft_params – Parameter for STFT.

	corr_dim_params – Parameter set for correlation dimension.

	
extract(path) → pandas.core.frame.DataFrame

	Run TimbreTrack on audio file.

	Parameters

	path – Path to audio file.

	Returns

	Extracted features.

	
property n_features

	Number of features.

	Returns

	Number of audio features.

FormTrack

Implementation of the FormTrack is planed.

Index

 _
 | E
 | N
 | T

_

 	
 	__init__() (comsar.tracks.TimbreTrack method)

E

 	
 	extract() (comsar.tracks.TimbreTrack method)

N

 	
 	n_features() (comsar.tracks.TimbreTrack property)

T

 	
 	TimbreTrack (class in comsar.tracks)

 nav.xhtml

 Table of Contents

 		
 Computational Music and Sound Archiving

 		
 Installation

 		
 Installation from PyPi

 		
 Installation from source

 		
 Basic usage

 		
 Track sytem

 		
 PitchTrack

 		
 RhythmTrack

 		
 TimbreTrack

 		
 FormTrack

_static/file.png

_static/minus.png

_static/plus.png

